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Tropospheric Ozone Chemistry by a Fleet of Supersonic  

Business Jets Projected in a 2020 Atmosphere 
 

M. Dutta, K. Patten, and D. Wuebbles 
University of Illinois, Urbana Campus 

Urbana, Illinois 61801 
 

Introduction 
A class of new supersonic aircraft for business purposes is currently under consideration 
for use starting around 2015 to 2020. These aircraft, which can accommodate about  
12 to 13 passengers, will fly at a speed of Mach 1.6 to 2 and are commonly termed as 
Supersonic Business Jets (SSBJs). A critical issue that needs to be addressed during the 
conception phase of such aircraft is the potential impact of emissions from such aircraft 
on the atmosphere especially on stratospheric ozone. 
 
Although these SSBJs will be much smaller in size and will have smaller engines than the 
hypothetical fleets of commercial passenger High Speed Civil Transport (HSCT) aircraft 
that we have studied previously (Dutta et al., 2002), they will still emit nitrogen oxides 
(NOx = NO + NO2), carbon dioxide (CO2), water vapor (H2O) and sulfur, the latter if it is 
still in the fuel. Thus, it is important to design these SSBJs in a manner so that a projected 
fleet of these aircraft will not have a significant effect on ozone or on climate. 
 
This report analyzes the potential impact of a fleet of SSBJs in a set of parametric 
analyses that examine the envelope of potential effects on ozone over a range of total fuel 
burns, emission indices of nitrogen oxides [E.I.(NOx)], and cruise altitudes, using the 
current version of the UIUC zonally-averaged two-dimensional model of the global 
atmosphere.  

Methodology 
Description of Scenarios 
 
A set of emissions scenarios for the future SSBJs has been developed for the Ultra-
Efficient Engine Technology (UEET) Program at the NASA Glenn Research Center by 
Baughcum et al (2002). The variables chosen for the parametric studies to evaluate the 
effects of atmospheric effects of SSBJs were fuel burn, cruise altitude and emission index 
of NOx. Fuel sulfur content was not considered in this parametric study because the 
effects are small and it is generally thought that sulfur will be eliminated from the fuel 
over the next few decades. 
 
Fuel burn is a function of the fleet size, utilization rate and aircraft engine technology. A 
supersonic business jet would have a much smaller fuel use at cruise since such aircraft 
are expected to be much smaller than other high speed civil transport or other commercial 
airliner. The total fuel burn for the projected fleet of SSBJs was treated parametrically 
and values of 6, 12, 18, and 24 Mlbs/day values were used. 
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Choice of the emission index for NOx is an important issue since much of the concern 
regarding the atmospheric effects of aircraft emissions arise from NOx amounts. For this 
study, emission indices of 10 and 20 g/kg fuel were considered for all the fuel burn cases. 
This range includes both current and projected engine technology. 
 
Three two kilometer altitude bands ranging from 13 to 19 kilometers (representation of 
these in our model is in log pressure altitude) were chosen for evaluating the effect  
of cruise altitudes on ozone concentrations so that emissions were put into the bands of 
13-15, 15-17 and 17-19 km.  
 
Since the two-dimensional model uses a grid based on pressure coordinates with 1.5 km 
between zones, the emissions were spread across two model layers of the model. The 
pressure grid of the emissions was remapped onto our pressure grid. Also, after zonally 
averaging, the emission file was remapped from its one-degree latitude distribution onto 
the 5-degree latitude resolution of the model. 
 
In the model, the background atmosphere was based on IPCC (2001) projections for a 
2020 atmosphere with the source gas concentrations of the long-lived species set 
according to Table 1. This choice of background concentrations of long-lived constituents 
is based on the A2 scenario recommended in IPCC (Houghton et al., 2001). Scenario A2 
is in the upper middle of the range of scenarios being used for analyzing the potential 
effects of human activities on climate. The scenarios were analyzed relative to the 
corresponding 2020 base with a subsonic aircraft included based on 2020 projected 
subsonic aircraft traffic and corresponding emissions developed by Baughcum et al. 
(2002). The SSBJ scenarios were then evaluated for their effects on ozone relative to this 
background atmosphere. 
 

Table 1.—Background surface concentrations  
in 2020 for long-lived gases, based on  

scenario A2 in IPCC (2001). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 2020 
CFC-11 (pptv) 214 
CFC-12 (pptv) 486 
CFC-13 (pptv) 72 
CC14 (pptv) 59 
HCFC-22 (pptv) 229 
CH3CC13 (pptv) 1 
HCFC-141b (pptv) 16 
Halon-1301 (pptv) 3.0 
Halon-1211 (pptv) 3.0 
CH3Cl (pptv) 550 
CH3Br (pptv) 7.34 
CH4 (ppbv) 1997 
N2O (ppbv) 335 
CO2 (ppmv) 417 
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Model Description 
 
The UIUC two-dimensional chemical radiative-transport model of the chemistry and 
physics of the global atmosphere is a zonally-averaged model to study human related and 
natural forcings on the global atmosphere. The model determines the atmospheric 
distributions of 78 chemically active atmospheric trace constituents. The model domain 
extends from pole to pole and from the ground to 84 km. A grid in the model represents  
5 degrees of latitude and 1.5 km in log-pressure altitude. In addition to 56 photolytic 
reactions, the model incorporates 161 thermal reactions in the chemical mechanism, 
including heterogeneous reactions. (Wei et al., 2001) 
 
The current 2002 version of the UIUC 2D model has some key improvements 
incorporated in it. Major upgrades to the solution technique of residual mean meridional 
circulation (RMMC) and the treatments of atmospheric dynamics were made through 
better representation of the effects of planetary waves and a more accurate method for 
determining the RMMC. Both planetary waves of wave numbers 1 and 2 are considered 
with real boundary topography and boundary winds. Latent heating and the sensible heat 
flux were specified based on GCM results, which are more physically meaningful. An 
accurate and fast longwave radiation code for the height of surface to 60 km is adopted  
in the radiation part of the model. The improvements in the treatment of the infrared 
radiation and RMMC solution technique are discussed in Choi and Youn (2001). The 
zonally averaged temperature and wind fields are specified based on 6-year climatology 
of the United Kingdom meteorological Office (UKMO) reanalysis data. In addition, 
background diffusion coefficients, which cannot be explicitly obtained in the model,  
are also tuned for the “leaky pipe” model and the model barrier between tropics, mid-
latitudes, and Polar Regions. All the upgraded components of this version of the model 
are briefly described in Table 2 (Dutta et al., 2002) 
 
In the current version of the model the chemistry has been updated according to JPL 00-3 
recommendations (DeMore et al., 2000). This particularly affects the nitrogen oxide 
chemistry, the N2O5 and ClONO2 hydrolysis and several HOCl and HCl reactions. HOBr 
and HOCl cross-sections and the O3 photolysis quantum yields are updated as well. 
 
All of these changes in the model have resulted in the improved representation of the 
distributions of age of air, which means better model transport in the “age of air” concept 
(Hall and Plumb, 1994; Hall et al., 1999). The upgraded components make the model 
mean age distribution closer to the observed features described in the NASA-sponsored 
“Models and Measurements II” (Park et al, 1999). The mean age distribution of the 
current UIUC 2D model shows the tropical pipe structure in the tropics as expected. 
Much older mean age at higher latitudes and higher altitudes are also derived, in much 
better comparison with observations. 
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Results and discussion 
 
A total of 24 SSBJ scenarios have been evaluated for this study. All the results are 
obtained from steady state model simulations where the model is run for 10 years with 
the same species input, heating rates input and climatological input files and differing 
aircraft emission input files according to the scenarios studied. Table 1 gives the total 
column ozone change, global and for the two hemispheres separately, for four cases of 
fuel burns and two emission indices of nitrogen oxides. For the highest cruise altitude 
band of 17-19 km, the total column ozone changes, for all cases of fuel burn and emission 
indices of NOx are shown in Table 2. 
 
In Table 1, for the cruise altitude band 13-15 km, there is no net total ozone depletion  
for the cruise altitude band 13-15 km. This can be attributed to the fact that in the upper 
troposphere and lowest altitudes of the stratosphere, ozone can be formed instead of 
destroyed by higher nitrogen oxide concentrations due to chemistry similar to the 
chemistry creating urban ozone. Thus, for any given latitude, there is a crossover point 
above which NOx destroys ozone and below which NOx produces ozone. For the higher 
E.I.(NOx) case of 20 g/kg of fuel, there is relatively more net formation of ozone in the 
lower cruise altitude band. 
 
From the two tables it is also observable that the impact in the Northern Hemisphere total 
column ozone change is more than double that of the impact in the Southern Hemisphere. 
Due to enhancement in the treatment of dynamical processes in this version of the model, 
there is an increased transport of NOx across the equatorial region. Nonetheless, the SSBJ 
air traffic in the Northern Hemisphere is projected to be such that the Northern 
Hemisphere impact outweighs that of the Southern Hemisphere. 
 
The maximum change in local ozone depletion amongst all the scenarios is 0.16 %, 
which is found for the higher total fuel burn of 24 Mlbs/day and E.I.(NOx) = 20 g/kg  
and the highest cruise altitude band of 17-19 km. For the most probable scenario of  
18 Mlbs/day , E.I.(NOx) of 20 g/kg of fuel and flying at 15-17 km , the maximum local 
ozone depletion is calculated to be 0.038 %. 
 
The trend of the percentage change in the Northern Hemisphere total column ozone for 
changing fuel burn for emission indices of 10 and 20 g/kg of fuel are studied in Figures 1 
and 2 respectively. We can see that the relation is linear for the lower two altitude bands 
but not quite so for the highest cruise altitude band. This slight nonlinearity is still under 
evaluation. For the first cruise altitude band of 13-15 km, there is a slight increase in 
ozone for reasons stated earlier. 
 
Figure 3 presents the calculated column ozone impact for the Northern Hemisphere as a 
function of cruise altitude for the two E.I.(NOx) and the two fuel burn cases of 12 and  
18 Mlbs/day. In this figure the altitude sensitivity of the studies show the point in the 
lower atmosphere where the effect on ozone transitions from a positive effect on ozone to 
a negative impact. The inflexion point is near 14.5 km. 
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Figure 4 shows the relationship between percentage change in total column ozone for all 
latitudes with respect to seasons for the fuel burn of 18 Mlbs/day, E.I.(NOx) of 20 g/kg  
of fuel and cruise altitude of 15-17 km case. Figure 5 depicts the percentage change in 
ozone profile for the same case and it is plotted for June 2020. From Figure 4, we see that 
there is an ozone minimum of around 0.037 % depletion around the North Pole region 
during the month of October. 
 
Figure 5 corroborates the fact that there is an intense ozone loss region around the 
northern higher latitudes and around the altitude range of the aircraft emission injection. 
This is expected due to the fact that most of projected air traffic would be in the  
Northern Hemisphere. Although the SSBJ aircraft emissions are primarily in the Northern 
Hemisphere mid-latitude region, the maximum ozone loss is observed at Northern 
Hemisphere high latitudes. This is because of the effects of atmospheric transport 
processes. 
 
In Figure 6 we see the percentage change in water vapor in the upper tropospheric/lower 
stratospheric region for the same case of 18Mlbs/day fuel burn, E.I.(NOx) 20 g/kg of fuel 
and flying at cruise altitude band of 15-17 km. There is a net positive change of more 
than 0.48 % for water vapor between 15-18 km altitude in the northern hemisphere.  
 
Similarly Figure 7 shows the percentage change in NOx for the same case and the 
maximum change is observed in the same region of northern hemisphere mid-latitude 
between 15-18 km altitude. This is obvious because of the maximum flight paths being 
between 30-60 degrees latitude in the Northern Hemisphere. 
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Table 2.—Percentage change in ozone for SSBJ scenarios relative to 2020 background 
atmosphere for altitude bands 13-15 and 15-17 km. NH and SH correspond to the total 

ozone change in the Northern and Southern Hemispheres, respectively. Global 
corresponds to the globally-averaged change in total ozone. Max and Min correspond  

to the maximum and minimum change in local ozone throughout the stratosphere. 
 
Fuel  
burn, 

Mlbs/day 

E.I.(NOx), 
g/kg of 

fuel 

Altitude  
band, 
(km) 

NH Percentage 
ozone 

impact (%),
SH 

Global Min  Max 

                
6 10 13-15 0.00077 0.00038 0.00057 0.0001 0.0019 

                
  20   0.00150 0.00068 0.00109 0.00019 0.0038 
                

12 10   0.00147 0.00067 0.00107 0.00019 0.0036 
                
  20   0.00292 0.00129 0.00211 0.00037 0.0074 
                

18 10   0.00203 0.00070 0.00137 -0.00071 0.0051 
                
  20   0.00413 0.00152 0.00282 -0.00048 0.0104 
                

24 10   0.00294 0.00113 0.00204 -0.00091 0.0073 
                
  20   0.00591 0.00244 0.00417 -0.00039 0.0150 
                
                

6 10 15-17 -0.00201 -0.00134 -0.00168 -0.0063 -0.00219 
                
  20   -0.00380 -0.00200 -0.00289 0.00118 -0.0036 
                

12 10   -0.00406 -0.00221 -0.00313 -0.00126 0.0221 
                
  20   -0.00779 -0.00409 -0.00594 -0.0241 0.0072 
                

18 10   -0.0064 -0.00365 -0.00502 -0.0196 0.0176 
                
  20   -0.0121 -0.00654 -0.00934 -0.00371 0.00803 
                

24 10   -0.00829 -0.00440 -0.00634 -0.025 0.0046 
                
  20   -0.0162 -0.00826 -0.0122 -0.04969 0.0141 
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Table 3.—Same as Table 2 but for 17 to 19 km 
 

Fuel  
burn, 

Mlbs/day 

E.I.(NOx), 
g/kg of 

fuel 

Altitude  
band, 
(km) 

NH Percentage 
ozone 

impact (%),
SH 

Global Min  Max 

        
                

6 10 17-19 -0.0088 -0.0061 -0.0076 -0.0321 -0.003 

               
  20   -0.0159 -0.00951 -0.01270 -0.0429 -0.0434 
                

12 10   -0.0178 -0.0118 -0.0148 -0.0559 -0.0061 
                
  20   -0.0323 -0.0188 -0.0255 -0.0871 -0.00899 
                

18 10   -0.0268 -0.0174 -0.022 -0.0746 -0.0093 
                
  20   -0.0458 -0.0274 -0.0366 -0.120 -0.013 
                

24 10   -0.0302 -0.0213 -0.0259 -0.0734 -0.011 
                
  20   -0.0608 -0.0355 -0.0482 -0.161 -0.014 
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Figure 1.—Percentage change in Northern Hemisphere total column ozone as  
 a function of total fuel burn for different cruise altitude bands for  
 E.I.(NOx) = 10 g/kg of fuel. 
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Figure 2.—Percentage change in Northern Hemisphere total column ozone as  
 a function of total fuel burn for different cruise altitude bands for  
 E.I.(NOx) = 20 g/kg of fuel. 

 
 
 
Figure 3.—Calculated total column ozone impact for the Northern hemisphere  

 as a function of cruise altitude for E.I.(NOx) = 10 and 20 g/kg of fuel  
 for two fuel burns of 12 and 18 Mlbs/day respectively. 
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Figure 4.—Percentage change in total column ozone for SSBJ having  
                   fuel burn of 18 Mlbs/day , E.I.(NOx) = 20 g/kg of fuel and 
                   flying at a cruise altitude centered around 16 km. 

 
 
Figure 5.—Percentage change in ozone profile for SSBJ having fuel  

                               burn of 18 Mlbs/day , E.I.(NOx) = 20 g/kg of fuel and flying  
                               at a cruise altitude centered around 16 km in June, 2020. 
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Figure 6.—Percentage change in water vapor for SSBJs having fuel burn  
                  of 18 Mlbs/day , E.I.(NOx) = 20 g/kg of fuel and flying at a  
                  cruise altitude centered around 16 km in June 2020. 

 

 
Figure 7.—Absolute change in NOx (in ppb) due to a fleet of QSJs having  
                   total fuel of 18 Mlbs/day, E.I.(NOx) = 20 g/kg of fuel and flying  
                   at an approximate altitude centered around 16 km in June 2020.  
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Conclusions 
 

 In this study of the potential impact of a fleet of SSBJs, the maximum local  
ozone depletion, even for the highest E.I.(NOx) of 20 g/kg of fuel, fuel burn of  
24 Mlbs/day and highest cruise altitude case, was found to be below 0.17%. Total 
ozone changes in the Northern Hemisphere are 0.061% or less. 

 
 For the most probable scenario of 18 Mlbs/day , E.I.(NOx) of 20 g/kg of fuel  

and flying at 15-17 km , the maximum local ozone depletion is calculated to be 
0.038%. 

 
 The relationship between the fuel burn and ozone depletion is almost linear. 

 
 

 The altitude in the atmosphere above which ozone depletion begins due to these 
projected flights happens to be around 14.5 km. 

 
 Very little effect is observed in the Southern Hemisphere due to the fleet of 

SSBJs. 
 

 This study provides crucial information for determining the optimum fuel burn, 
emission index of NOx and cruise altitude of the projected fleet of Supersonic 
Business jets, such that ozone depletion in the lower stratosphere is kept to 
minimum. 
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A class of new supersonic aircraft for business purposes is currently under consideration for use starting around 2015 to
2020. These aircraft, which can accommodate about 12 to 13 passengers, will fly at a speed of Mach 1.6 to 2 and
are commonly termed as Supersonic Business Jets (SSBJs). A critical issue that needs to be addressed during the
conception phase of such aircraft is the potential impact of emissions from such aircraft on the atmosphere especially
on stratospheric ozone. Although these SSBJs will be much smaller in size and will have smaller engines than the
hypothetical fleets of commercial passenger High Speed Civil Transport (HSCT) aircraft that we have studied previously,
they will still emit nitrogen oxides (NOx = NO + NO2), carbon dioxide (CO2), water vapor (H2O) and sulfur, the latter if
it is still in the fuel. Thus, it is important to design these SSBJs in a manner so that a projected fleet of these aircraft will
not have a significant effect on ozone or on climate. This report analyzes the potential impact of a fleet of SSBJs in a set
of parametric analyses that examine the envelope of potential effects on ozone over a range of total fuel burns, emission
indices of nitrogen oxides [E.I.(NOx)], and cruise altitudes, using the current version of the UIUC zonally-averaged two-
dimensional model of the global atmosphere.






